2,137 research outputs found

    The Cosmic Infrared Background: Measurements and Implications

    Get PDF
    The cosmic infrared background records much of the radiant energy released by processes of structure formation that have occurred since the decoupling of matter and radiation following the Big Bang. In the past few years, data from the Cosmic Background Explorer mission provided the first measurements of this background, with additional constraints coming from studies of the attenuation of TeV gamma-rays. At the same time there has been rapid progress in resolving a significant fraction of this background with the deep galaxy counts at infrared wavelengths from the Infrared Space Observatory instruments and at submillimeter wavelengths from the Submillimeter Common User Bolometer Array instrument. This article reviews the measurements of the infrared background and sources contributing to it, and discusses the implications for past and present cosmic processes.Comment: 61 pages, incl. 9 figures, to be published in Annual Reviews of Astronomy and Astrophysics, 2001, Vol. 3

    Slepian functions and their use in signal estimation and spectral analysis

    Full text link
    It is a well-known fact that mathematical functions that are timelimited (or spacelimited) cannot be simultaneously bandlimited (in frequency). Yet the finite precision of measurement and computation unavoidably bandlimits our observation and modeling scientific data, and we often only have access to, or are only interested in, a study area that is temporally or spatially bounded. In the geosciences we may be interested in spectrally modeling a time series defined only on a certain interval, or we may want to characterize a specific geographical area observed using an effectively bandlimited measurement device. It is clear that analyzing and representing scientific data of this kind will be facilitated if a basis of functions can be found that are "spatiospectrally" concentrated, i.e. "localized" in both domains at the same time. Here, we give a theoretical overview of one particular approach to this "concentration" problem, as originally proposed for time series by Slepian and coworkers, in the 1960s. We show how this framework leads to practical algorithms and statistically performant methods for the analysis of signals and their power spectra in one and two dimensions, and on the surface of a sphere.Comment: Submitted to the Handbook of Geomathematics, edited by Willi Freeden, Zuhair M. Nashed and Thomas Sonar, and to be published by Springer Verla

    From microarray to biology: an integrated experimental, statistical and in silico analysis of how the extracellular matrix modulates the phenotype of cancer cells

    Get PDF
    A statistically robust and biologically-based approach for analysis of microarray data is described that integrates independent biological knowledge and data with a global F-test for finding genes of interest that minimizes the need for replicates when used for hypothesis generation. First, each microarray is normalized to its noise level around zero. The microarray dataset is then globally adjusted by robust linear regression. Second, genes of interest that capture significant responses to experimental conditions are selected by finding those that express significantly higher variance than those expressing only technical variability. Clustering expression data and identifying expression-independent properties of genes of interest including upstream transcriptional regulatory elements (TREs), ontologies and networks or pathways organizes the data into a biologically meaningful system. We demonstrate that when the number of genes of interest is inconveniently large, identifying a subset of "beacon genes" representing the largest changes will identify pathways or networks altered by biological manipulation. The entire dataset is then used to complete the picture outlined by the "beacon genes." This allow construction of a structured model of a system that can generate biologically testable hypotheses. We illustrate this approach by comparing cells cultured on plastic or an extracellular matrix which organizes a dataset of over 2,000 genes of interest from a genome wide scan of transcription. The resulting model was confirmed by comparing the predicted pattern of TREs with experimental determination of active transcription factors

    Scalar and vector Slepian functions, spherical signal estimation and spectral analysis

    Full text link
    It is a well-known fact that mathematical functions that are timelimited (or spacelimited) cannot be simultaneously bandlimited (in frequency). Yet the finite precision of measurement and computation unavoidably bandlimits our observation and modeling scientific data, and we often only have access to, or are only interested in, a study area that is temporally or spatially bounded. In the geosciences we may be interested in spectrally modeling a time series defined only on a certain interval, or we may want to characterize a specific geographical area observed using an effectively bandlimited measurement device. It is clear that analyzing and representing scientific data of this kind will be facilitated if a basis of functions can be found that are "spatiospectrally" concentrated, i.e. "localized" in both domains at the same time. Here, we give a theoretical overview of one particular approach to this "concentration" problem, as originally proposed for time series by Slepian and coworkers, in the 1960s. We show how this framework leads to practical algorithms and statistically performant methods for the analysis of signals and their power spectra in one and two dimensions, and, particularly for applications in the geosciences, for scalar and vectorial signals defined on the surface of a unit sphere.Comment: Submitted to the 2nd Edition of the Handbook of Geomathematics, edited by Willi Freeden, Zuhair M. Nashed and Thomas Sonar, and to be published by Springer Verlag. This is a slightly modified but expanded version of the paper arxiv:0909.5368 that appeared in the 1st Edition of the Handbook, when it was called: Slepian functions and their use in signal estimation and spectral analysi

    Rapid overview of systematic reviews of nocebo effects reported by patients taking placebos in clinical trials

    Get PDF
    Background Trial participants in placebo groups report experiencing adverse events (AEs). Existing systematic reviews have not been synthesized, leaving questions about why these events occur as well as their prevalence across different conditions unanswered. Objectives (1) To synthesize the evidence of prevalence of AEs in trial placebo groups across different conditions. (2) To compare AEs in trial placebo groups with AEs reported in untreated groups within a subset of randomized trials. Search methods We searched PubMed for records with the word “nocebo” in the title and “systematic” in any field. We also contacted experts and hand-searched references of included studies. Study eligibility We included any systematic review of randomized trials where nocebo effects were reported. We excluded systematic reviews of non-randomized studies. Participants and interventions We included studies in any disease area. Study appraisal and synthesis methods We appraised the quality of the studies using a shortened version of the Assessment of Multiple Systematic Reviews tool (AMSTAR) tool. We reported medians and interquartile ranges (IQRs) of AEs. Among the trials within the review that included untreated groups, we compared the prevalence of AEs in untreated groups with the prevalence of AEs in placebo groups. Results We identified 20 systematic reviews. These included 1271 randomized trials and 250,726 placebo-treated patients. The median prevalence of AEs in trial placebo groups was 49.1% (IQR 25.7–64.4%). The median rate of dropouts due to AEs was 5% (IQR 2.28–8.4%). Within the 15 of trials that reported AEs in untreated groups, we found that the AE rate in placebo groups (6.51%) was higher than that reported in untreated groups (4.25%). Limitations This study was limited by the quality of included reviews and the small number of trials that included untreated groups. Conclusions and implications of key findings AEs in trial placebo groups are common and cannot be attributed entirely to natural history. Trial methodologies that reduce AEs in placebo groups while satisfying the requirement of informed consent should be developed and implemented

    Equilibrium configurations of two charged masses in General Relativity

    Get PDF
    An asymptotically flat static solution of Einstein-Maxwell equations which describes the field of two non-extreme Reissner - Nordstr\"om sources in equilibrium is presented. It is expressed in terms of physical parameters of the sources (their masses, charges and separating distance). Very simple analytical forms were found for the solution as well as for the equilibrium condition which guarantees the absence of any struts on the symmetry axis. This condition shows that the equilibrium is not possible for two black holes or for two naked singularities. However, in the case when one of the sources is a black hole and another one is a naked singularity, the equilibrium is possible at some distance separating the sources. It is interesting that for appropriately chosen parameters even a Schwarzschild black hole together with a naked singularity can be "suspended" freely in the superposition of their fields.Comment: 4 pages; accepted for publication in Phys. Rev.

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    TcOPT3, a Member of Oligopeptide Transporters from the Hyperaccumulator Thlaspi caerulescens, Is a Novel Fe/Zn/Cd/Cu Transporter

    Get PDF
    BACKGROUND: Thlaspi caerulescens is a natural selected heavy metal hyperaccumulator that can not only tolerate but also accumulate extremely high levels of heavy metals in the shoots. Thus, to identify the transportors involved in metal long-distance transportation is very important for understanding the mechanism of heavy metal accumulation in this hyperaccumulator. METHODOLOGY/PRINCIPAL FINDINGS: We cloned and characterized a novel gene TcOPT3 of OPT family from T. caerulescens. TcOPT3 was pronouncedly expressed in aerial parts, including stem and leaf. Moreover, in situ hybridization analyses showed that TcOPT3 expressed in the plant vascular systems, especially in the pericycle cells that may be involved in the long-distance transportation. The expression of TcOPT3 was highly induced by iron (Fe) and zinc (Zn) deficiency, especially in the stem and leaf. Sub-cellular localization showed that TcOPT3 was a plasma membrane-localized protein. Furthermore, heterogonous expression of TcOPT3 by mutant yeast (Saccharomyces cerevisiae) complementation experiments demonstrated that TcOPT3 could transport Fe(2+) and Zn(2+). Moreover, expression of TcOPT3 in yeast increased metal (Fe, Zn, Cu and Cd) accumulation and resulted in an increased sensitivity to cadmium (Cd) and copper (Cu). CONCLUSIONS: Our data demonstrated that TcOPT3 might encode an Fe/Zn/Cd/Cu influx transporter with broad-substrate. This is the first report showing that TcOPT3 may be involved in metal long-distance transportation and contribute to the heavy metal hyperaccumulation

    Search for a Technicolor omega_T Particle in Events with a Photon and a b-quark Jet at CDF

    Full text link
    If the Technicolor omega_T particle exists, a likely decay mode is omega_T -> gamma pi_T, followed by pi_T -> bb-bar, yielding the signature gamma bb-bar. We have searched 85 pb^-1 of data collected by the CDF experiment at the Fermilab Tevatron for events with a photon and two jets, where one of the jets must contain a secondary vertex implying the presence of a b quark. We find no excess of events above standard model expectations. We express the result of an exclusion region in the M_omega_T - M_pi_T mass plane.Comment: 14 pages, 2 figures. Available from the CDF server (PS with figs): http://www-cdf.fnal.gov/physics/pub98/cdf4674_omega_t_prl_4.ps FERMILAB-PUB-98/321-
    corecore